
Bluefin Spot
Security Assessment

November 2nd, 2024 — Prepared by OtterSec

Robert Chen r@osec.io

Michał Bochnak embe221ed@osec.io

Sangsoo Kang sangsoo@osec.io

mailto:r@osec.io
mailto:embe221ed@osec.io
mailto:sangsoo@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5

OS-RPL-ADV-00 | Faulty Constant Definition 6

OS-RPL-ADV-01 | Reward Accumulation During Inactive Time Period 7

OS-RPL-ADV-02 | Absence of Version Update Functionality 9

OS-RPL-ADV-03 | Risk of Reentrancy During Flash Swap 10

OS-RPL-ADV-04 | Improper Oracle Update 11

OS-RPL-ADV-05 | Incorrect Price Boundary Checks 12

General Findings 14

OS-RPL-SUG-00 | Initialization Price Validation 15

OS-RPL-SUG-01 | Code Refactoring 16

OS-RPL-SUG-02 | Missing Validation Logic 17

Appendices

Vulnerability Rating Scale 18

Procedure 19

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 19

01 — Executive Summary

Overview

Firefly protocol engagedOtterSec to assess the bluefin-spotbluefin-spot program. This assessment was conducted
between October 22nd and November 1st, 2024. For more information on our auditing methodology,

refer to Appendix B.

Key Findings

We produced 9 findings throughout this audit engagement.

In particular, we identified a critical vulnerability where the constant for storing the maximum value of

a 64-bit unsigned number is incorrectly defined, as it is missing a character in its declaration, resulting

in a length of 15 instead of the expected 16 characters, which may have adverse effects on the tick

calculation (OS-RPL-ADV-00). Additionally, when a reward distribution is restarted after a pause, the

system incorrectly includes the inactive periods in reward calculations, resulting in inaccurate reward

distribution (OS-RPL-ADV-01). Furthermore, the configuration module lacks a function to update the

version, which is essential for managing package upgrades and ensuring compatibility with newer versions

(OS-RPL-ADV-02).

We also recommended including validation during the pool creation process to ensure that the initial

square root price falls within a safe and operational range (OS-RPL-SUG-00), and advised incorporating

additional checks within the codebase for improved robustness and security (OS-RPL-SUG-02). We

further suggested modifying the codebase for improved functionality, efficiency, and maintainability

(OS-RPL-SUG-01).

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 19

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/fireflyprotocol/bluefin-spot-

contracts. This audit was performed against 68beb25.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

bluefin-spot
This module includes the Sui smart contracts for the Bluefin spot ex-

change program.

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 19

https://github.com/fireflyprotocol/bluefin-spot-contracts
https://github.com/fireflyprotocol/bluefin-spot-contracts
https://github.com/fireflyprotocol/bluefin-spot-contracts/commit/68beb257615b54811842b8376d3034adb0511280

03 — Findings

Overall, we reported 9 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 1

HIGHHIGH 0

MEDIUMMEDIUM 1

LOWLOW 4

INFOINFO 3

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 19

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-RPL-ADV-00
CRITICALCRITICAL RESOLVEDRESOLVED

The MAX_u64MAX_u64 constant in the constants

module is missing an ff , resulting in a length
of 15 instead of the expected 16 characters.

OS-RPL-ADV-01
MEDIUMMEDIUM RESOLVEDRESOLVED

When a reward distribution is restarted after

a pause, the system incorrectly includes the

inactive periods in the reward calculations,

resulting in inaccurate reward distribution.

OS-RPL-ADV-02
LOWLOW RESOLVEDRESOLVED

The configuration module lacks a function

to update the version, which is essential for

managing package upgrades and ensuring

compatibility with newer versions.

OS-RPL-ADV-03
LOWLOW RESOLVEDRESOLVED

The flash swap operation is vulnerable to

reentrancy attacks.

OS-RPL-ADV-04
LOWLOW RESOLVEDRESOLVED

In update_pool_stateupdate_pool_state , the

oracle::updateoracle::update call utilizes the updated

current_tick_indexcurrent_tick_index after the swap,

which may result in inaccurate oracle

observations.

OS-RPL-ADV-05
LOWLOW RESOLVEDRESOLVED

swap_in_poolswap_in_pool contains a vulnerabil-

ity where the conditions for validating

sqrt_price_max_limitsqrt_price_max_limit utilize <=<= and

>=>= , allowing for invalid swaps that exceed
the tick boundaries.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 19

Bluefin Spot Audit 04 — Vulnerabilities

Faulty Constant Definition CRITICALCRITICAL OS-RPL-ADV-00

Description

The constant MAX_u64MAX_u64 is supposed to represent the maximum value of a 64-bit unsigned integer, which

is 264 − 1. In hexadecimal, this value should be represented as 0xFFFFFFFFFFFFFFFF0xFFFFFFFFFFFFFFFF , which consists of
16 hexadecimal characters. However, in the current declaration, there is an ff missing, resulting in the

length of the constant being 15 characters instead of the required 16.

>_ sources/maths/bit_math.move move

public fun least_significant_bit(mask: u256) : u8 {
assert!(mask > 0, 0);
let bit = 255;
[...]
if (mask & (constants::max_u64() as u256) > 0) {

bit = bit - 64;
} else {

mask = mask >> 64;
};
[...]
bit

}

Since MAX_u64MAX_u64 is incorrectly defined, it results in improper bitwise operations when determining the least

significant bit (LSB) of the input mask in least_significant_bitleast_significant_bit . Specifically, the function checks if
mask & max_u64mask & max_u64 is greater than 0 to determine if any bits in the least significant 64 bits are set. If this

constant is one character short, it effectively ignores the highest bit (the most significant bit in the 64-bit

range) when performing this check. This is particularly critical because this function is utilized to search

for the next initialized tick, and thus, it may result in the calculation of an incorrect tick position.

Remediation

Correct the definition of MAX_u64MAX_u64 constant to include the missing character ff , ensuring it has the

correct value and length of 16 characters.

Patch

Resolved in f9025e9.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 19

https://github.com/fireflyprotocol/bluefin-spot-contracts/commit/f9025e9d9d248d5b1ac97974b9968c69f9646843

Bluefin Spot Audit 04 — Vulnerabilities

Reward Accumulation During Inactive Time Period MEDIUMMEDIUM OS-RPL-ADV-01

Description

There is a vulnerability in how reward calculations are handled for liquidity positions after a reward

distribution has ended and then restarts. There is no way to correctly restart the distribution of the same

type after a reward distribution has finished. Specifically, the calculation incorrectly includes inactive time

(the time period after the distribution ended but before it restarts) in the reward accumulation, resulting in

inaccurate rewards for positions.

>_ sources/pool.move move

public(friend) fun update_reward_infos<CoinTypeA, CoinTypeB>(pool: &mut Pool<CoinTypeA,
CoinTypeB>, current_timestamp_seconds: u64) : vector<u128> {↪→

let reward_growth_globals = vector::empty<u128>();
let current_index = 0;
while (current_index < vector::length<PoolRewardInfo>(&pool.reward_infos)) {

[...]
if (current_timestamp_seconds > reward_info.last_update_time) {

[...]
if (pool.liquidity != 0 && min_timestamp > reward_info.last_update_time) {

let rewards_accumulated = full_math_u128::full_mul(((min_timestamp
-reward_info.last_update_time) as u128),
reward_info.reward_per_seconds);

↪→

↪→

[...]
reward_info.total_reward_allocated = reward_info.total_reward_allocated +

((rewards_accumulated/ (constants::q64() as u256)) as u64);↪→

};
reward_info.last_update_time = current_timestamp_seconds;

};
vector::push_back<u128>(&mut reward_growth_globals, reward_info.reward_growth_global);

};
reward_growth_globals

}

In both pool::update_reward_infospool::update_reward_infos and position::updateposition::update , reward growth is based on the

difference between the current_timestamp_secondscurrent_timestamp_seconds and the last update time. When

pool::update_pool_reward_emissionpool::update_pool_reward_emission is called to restart distribution, the function does not account

for any time gap between the previous reward end and the new start time. As a result, liquidity providers

may receive extra rewards that do not correspond to any actual activity.

For example, if reward distribution ends at time t0, and a new distribution restarts at time t1, the reward

accumulation for liquidity positions incorrectly includes the inactive period [t0, t1]. Ideally, rewards should

only accumulate while there is an active reward emission. However, because update_reward_infosupdate_reward_infos
and updateupdate rely on the difference between the last updated timestamp and the current timestamp, they

end up counting this inactive interval in reward calculations.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 19

Bluefin Spot Audit 04 — Vulnerabilities

Remediation

When calculating rewards, ensure that only the time intervals where rewards were actively distributed are

included.

Patch

Resolved in f9025e9.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 19

https://github.com/fireflyprotocol/bluefin-spot-contracts/commit/f9025e9d9d248d5b1ac97974b9968c69f9646843

Bluefin Spot Audit 04 — Vulnerabilities

Absence of Version Update Functionality LOWLOW OS-RPL-ADV-02

Description

In configconfig , there is no mechanism to update the protocol’s version during package upgrades. This

limitation will pose significant issues when deploying new versions of the protocol, especially if breaking

changes are introduced. The GlobalConfigGlobalConfig structure contains a versionversion field, which is intended to

track the current version of the protocol. The VERSIONVERSION constant is defined in the module, but there is no

function to modify the versionversion field of GlobalConfigGlobalConfig after the initial setup.

Remediation

Implement a functionality to upgrade the versionversion field within configconfig .

Patch

Resolved in f9025e9.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 19

https://github.com/fireflyprotocol/bluefin-spot-contracts/commit/f9025e9d9d248d5b1ac97974b9968c69f9646843

Bluefin Spot Audit 04 — Vulnerabilities

Risk of Reentrancy During Flash Swap LOWLOW OS-RPL-ADV-03

Description

In poolpool , there is a lack of a reentrancyreentrancy guard during flash swap operations, allowing potential reentrant

calls to be made via other functions, which might result in the manipulation of the pool values.

Remediation

Add a reentrancy guard to prevent the calling of other functions during the execution of a flash swap.

Patch

Resolved in f9025e9.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 19

https://github.com/fireflyprotocol/bluefin-spot-contracts/commit/f9025e9d9d248d5b1ac97974b9968c69f9646843

Bluefin Spot Audit 04 — Vulnerabilities

Improper Oracle Update LOWLOW OS-RPL-ADV-04

Description

pool::update_pool_statepool::update_pool_state is responsible for updating the state of the liquidity pool after a swap

operation occurs. In the current code, oracle::updateoracle::update is called after the pool’s current_tick_indexcurrent_tick_index
and current_sqrt_pricecurrent_sqrt_price have been updated based on the swap result. This timing will result in

the recording of inaccurate and misleading data in the oracle regarding the pool’s state before the swap

occurred, rendering the data inconsistent.

>_ sources/pool.move move

fun update_pool_state<CoinTypeA, CoinTypeB>(pool: &mut Pool<CoinTypeA, CoinTypeB>, swap_result:
SwapResult, current_time: u64) {↪→

// current tick index of pool is not the same as swap result
if (!i32::eq(pool.current_tick_index, swap_result.current_tick_index)) {

pool.current_sqrt_price = swap_result.end_sqrt_price;
pool.current_tick_index = swap_result.current_tick_index;
oracle::update(

&mut pool.observations_manager,
pool.current_tick_index,
pool.liquidity,
current_time,

);
} else {

pool.current_sqrt_price = swap_result.end_sqrt_price;
};
[...]

}

Remediation

Call oracle::updateoracle::update before updating current_tick_indexcurrent_tick_index .

Patch

Resolved in f9025e9.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 19

https://github.com/fireflyprotocol/bluefin-spot-contracts/commit/f9025e9d9d248d5b1ac97974b9968c69f9646843

Bluefin Spot Audit 04 — Vulnerabilities

Incorrect Price Boundary Checks LOWLOW OS-RPL-ADV-05

Description

In pool::swap_in_poolpool::swap_in_pool , for a swap from CoinTypeACoinTypeA to CoinTypeBCoinTypeB (a2ba2b is true), the current square

root price of the pool must be greater than sqrt_price_max_limitsqrt_price_max_limit , and sqrt_price_max_limitsqrt_price_max_limit
must be greater than or equal to the minimum square root price. For a swap from CoinTypeBCoinTypeB to

CoinTypeACoinTypeA (a2ba2b is false), the current square root price must be less than sqrt_price_max_limitsqrt_price_max_limit ,

and sqrt_price_max_limitsqrt_price_max_limit must be less than or equal to the maximum square root price.

>_ sources/pool.move move

fun swap_in_pool<CoinTypeA, CoinTypeB>(
clock: &Clock,
pool: &mut Pool<CoinTypeA, CoinTypeB>,
a2b: bool,
by_amount_in: bool,
amount:u64,
sqrt_price_max_limit: u128): SwapResult

{
[...]
if (a2b) {

assert!(pool.current_sqrt_price > sqrt_price_max_limit && sqrt_price_max_limit >=
tick_math::min_sqrt_price(), errors::invalid_price_limit());↪→

} else {
assert!(pool.current_sqrt_price < sqrt_price_max_limit && sqrt_price_max_limit <=

tick_math::max_sqrt_price(), errors::invalid_price_limit());↪→

};
[...]

}

However, if the current tick is at MIN_TICKMIN_TICK (the lowest price in the pool), then the condition

sqrt_price_max_limit >= min_sqrt_pricesqrt_price_max_limit >= min_sqrt_price will still pass if sqrt_price_max_limitsqrt_price_max_limit equals

min_sqrt_pricemin_sqrt_price . This implies that the swap may attempt to process even when the price boundary
is effectively breached. Similarly, if the current tick is at MAX_TICK - 1MAX_TICK - 1 , utilizing <=<= may allow

sqrt_price_max_limitsqrt_price_max_limit to equal max_sqrt_pricemax_sqrt_price , which will result in an invalid operation that tries
to push the square root price beyond the maximum limit.

Thus, utilizing >=>= and <=<= in the boundary checks is not appropriate, as allowing the price to hit the exact

minimum or maximum boundaries will result in attempts to execute swaps that lead to invalid price states.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 19

Bluefin Spot Audit 04 — Vulnerabilities

Remediation

Modify the conditions to utilize << and >> instead of <=<= and >=>= . This ensures that the square root price

limit is strictly greater than the minimum square root price and strictly less than the maximum square root

price.

Patch

Resolved in f9025e9.

© 2024 Otter Audits LLC. All Rights Reserved. 13 / 19

https://github.com/fireflyprotocol/bluefin-spot-contracts/commit/f9025e9d9d248d5b1ac97974b9968c69f9646843

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-RPL-SUG-00
The pool may be initialized at max_sqrt_pricemax_sqrt_price , but max_tickmax_tick is an

area that should remain unreachable.

OS-RPL-SUG-01
Recommendation for modifying the codebase for improved functionality,

efficiency, and maintainability.

OS-RPL-SUG-02
There are several instances where proper validation is not done, resulting

in potential security issues.

© 2024 Otter Audits LLC. All Rights Reserved. 14 / 19

Bluefin Spot Audit 05 — General Findings

Initialization Price Validation OS-RPL-SUG-00

Description

In tick_math::get_tick_at_sqrt_pricetick_math::get_tick_at_sqrt_price , utilizing <=<= implies that the pool may be initialized at

max_sqrt_pricemax_sqrt_price . However, max_tickmax_tick represents an area that should remain unreachable. Thus,

allowing initialization at max_sqrt_pricemax_sqrt_price effectively opens up the possibility for the pool to operate at

extreme prices.

>_ sources/maths/tick_math.move move

public fun get_tick_at_sqrt_price(sqrt_price: u128): i32::I32 {
assert!(sqrt_price >= MIN_SQRT_PRICE_X64 && sqrt_price <= MAX_SQRT_PRICE_X64,

EINVALID_SQRT_PRICE);↪→

let r = sqrt_price;
[...]

}

Remediation

Include validation during the pool creation process to ensure that the initial sqrt_pricesqrt_price falls within a

safe and operational range.

Patch

Resolved in f9025e9.

© 2024 Otter Audits LLC. All Rights Reserved. 15 / 19

https://github.com/fireflyprotocol/bluefin-spot-contracts/commit/f9025e9d9d248d5b1ac97974b9968c69f9646843

Bluefin Spot Audit 05 — General Findings

Code Refactoring OS-RPL-SUG-01

Description

1. For improved functionality and control, add functions to remove an address from the

reward_managersreward_managers list in configconfig , and to update the is_pausedis_paused state of the pool.

2. Include the entryentry keyword in gateway::collect_rewardgateway::collect_reward to allow the function to be called

externally, enabling users to easily retrieve their rewards from their liquidity positions in the pool.

>_ sources/gateway.move move

/// Allows user to collect the rewards accrued on their position
public fun collect_reward<CoinTypeA, CoinTypeB, RewardCoinType>(

clock: &Clock,
protocol_config: &GlobalConfig,
pool: &mut Pool<CoinTypeA, CoinTypeB>,
position: &mut Position,
ctx: &mut TxContext
){
[...]

}

Remediation

Implement the above-mentioned suggestions.

Patch

Resolved in f9025e9.

© 2024 Otter Audits LLC. All Rights Reserved. 16 / 19

https://github.com/fireflyprotocol/bluefin-spot-contracts/commit/f9025e9d9d248d5b1ac97974b9968c69f9646843

Bluefin Spot Audit 05 — General Findings

Missing Validation Logic OS-RPL-SUG-02

Description

1. in add_liquidityadd_liquidity , add_liquidity_with_fixed_amountadd_liquidity_with_fixed_amount , remove_liquidityremove_liquidity , swapswap , and

flash_swapflash_swap , check that the amount passed is greater than zero, as allowing zero amounts to be
passed into these functions will result in nonsensical operations.

2. Limit the values of fee_ratefee_rate and tick_spacingtick_spacing to an acceptable range in pool::newpool::new .

As a high fee rate will discourage users from providing liquidity or trading within the pool, and if

tick_spacingtick_spacing is set too small, it may result in inefficient liquidity distribution, rendering it difficult

for traders to execute orders at desired prices.

3. In admin::update_supported_versionadmin::update_supported_version , add a validation to ensure the incremented
config.versionconfig.version does not exceed the latest version.

Remediation

Incorporate the above validations.

Patch

Resolved in f9025e9.

© 2024 Otter Audits LLC. All Rights Reserved. 17 / 19

https://github.com/fireflyprotocol/bluefin-spot-contracts/commit/f9025e9d9d248d5b1ac97974b9968c69f9646843

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 18 / 19

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 19 / 19

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-RPL-ADV-00 | Faulty Constant Definition
	[8.75em][l]OS-RPL-ADV-01 | Reward Accumulation During Inactive Time Period
	[8.75em][l]OS-RPL-ADV-02 | Absence of Version Update Functionality
	[8.75em][l]OS-RPL-ADV-03 | Risk of Reentrancy During Flash Swap
	[8.75em][l]OS-RPL-ADV-04 | Improper Oracle Update
	[8.75em][l]OS-RPL-ADV-05 | Incorrect Price Boundary Checks

	General Findings
	[8.75em][l]OS-RPL-SUG-00 | Initialization Price Validation
	[8.75em][l]OS-RPL-SUG-01 | Code Refactoring
	[8.75em][l]OS-RPL-SUG-02 | Missing Validation Logic

	Appendices
	Vulnerability Rating Scale
	Procedure

