
Bluefin Foundation Exchange
Contracts
Security Assessment

June 23, 2023

Prepared for:

Rabeel Jawaid
Bluefin Foundation

Prepared by: Josselin Feist and Anish Naik

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Bluefin Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Bluefin
under the terms of the project statement of work and has been made public at Bluefin’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Bluefin Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 6

Project Summary 8

Project Goals 9

Project Targets 10

Project Coverage 11

Codebase Maturity Evaluation 15

Summary of Findings 17

Detailed Findings 19

1. Order hashing schema is vulnerable to replay attacks 19

2. Unclear usage of token decimal precision 21

3. Order type (maker/taker) is not enforced 23

4. Inconsistent order of operations when opening or increasing a position 25

5. Fees in apply_isolated_margin has an incorrect rounding direction 27

6. Error handling deviates from Sui best practices 29

7. Unnecessary use of Move abilities 31

8. The liquidation module’s trade function is callable by any module 33

9. The create_position function is lacking access controls 35

10. Margin ratio validation deviates from the mathematical specification 37

11. Overcomplicated access control mechanism for the Guardian 39

12. Inconsistent order of operations when flipping positions 41

13. Incorrect rounding in the profit and loss computation allows to withdraw more
assets than expected 43

Trail of Bits 3 Bluefin Security Assessment
PUBLIC

14. Improper market order design 45

15. Sui lacks security maturity 47

A. Vulnerability Categories 48

B. Code Maturity Categories 50

C. Unit tests for issue TOB-BLUEFIN-4 52

D. Unit tests for issue TOB-BLUEFIN-5 54

E. Unit tests for issue TOB-BLUEFIN-12 55

F. Unit tests for issue TOB-BLUEFIN-13 56

G. Move/Sui Checks 57

H. Access Control Capabilities 59

I. Access Control Review 61

Error 61

Evaluator 61

Exchange 61

Guardian 62

Isolated_liquidated 62

Library 62

Margin_bank 63

Perpetual 63

Position 64

Price_oracle 64

Roles 65

Signed_number 65

J. Rounding Recommendations 66

Determining the rounding direction: Simple rounding 66

Context-dependent rounding: PnL example 66

Trail of Bits 4 Bluefin Security Assessment
PUBLIC

Rounding and negative number 66

Rewriting PnL to ease rounding 68

General rules 69

K. Code Quality Recommendations 70

Exchange 70

MarginBank 70

Evaluator 70

Trades 70

Position 70

L. Trade Modules Architecture Recommendations 71

M. Summary of Fix Review Results 72

Detailed Fix Review Results 74

Trail of Bits 5 Bluefin Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Bluefin engaged Trail of Bits to review the security of the Bluefin exchange contracts.
Bluefin exchange is a decentralized exchange for perpetual swaps written in Sui Move for
the Sui blockchain.

A team of two consultants conducted the review from March 20 to April 14, 2023, for a total
of eight engineer-weeks of effort. Our testing efforts focused on three critical goals. Our
primary goal was to assess whether the protocol correctly used Sui’s unique object
ownership and access control paradigm and followed Sui Move best practices. Second, we
focused on the implementation of the mathematical specification to identify any rounding
errors, unexpected overflows, or edge cases that could violate system properties. Finally,
we focused on the data validation performed in the system to assess whether it allows any
opportunities for malicious attack vectors or invalid order matching. With full access to
source code and documentation, we performed manual analysis of the target.

Observations and Impact
The Move codebase has been built following the existing Solidity counterpart. As a result, it
avoids several pitfalls that commonly affect new codebases, particularly bugs surrounding
the logic of the system. However, the project suffers from relying only on integration tests
and does not possess any Move-level unit tests. Given the young state of Move/Sui, lacking
such tests significantly increases the risks of using the contracts. While the access controls
rely properly on Move objects, the access control-related assumptions are undocumented,
which increases the likelihood that issues will be introduced during further development.
We also found that the overall arithmetic operations suffer from two systematic risks:
out-of-order operations and lack of rounding considerations. Finally, some critical parts of
the code (e.g., the trade functions) would benefit from more modularity, which would have
eased our review of them.

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that Bluefin take the following steps prior to further
development:

● Remediate the findings disclosed in this report. The findings described in
Detailed Findings pose several risks for the codebase. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Perform a thorough analysis of the arithmetic order of operations and
rounding. These two areas have systematic risks, and require further investigations

Trail of Bits 6 Bluefin Security Assessment
PUBLIC

for the isolated_liquidation and isolated_adl modules (see appendix J) .
Similar risks may exist in the Solidity counterpart.

● Develop a test suite that uses Move’s and Sui’s built-in testing framework.
Given the nascency of the Sui and Sui Move technology stack, it would be beneficial
to test the system with its native language.

● Develop thorough inline documentation for the arithmetic operations. This
includes the following actions:

○ Clarify the roles of the variables in the arithmetic formula (e.g, oiOpen is
described as an “open interest” but it is not an open interest in the traditional
sense).

○ Add the arithmetic formulas as inline code documentation when they are
defined or used.

● Documentation and clarify the access controls expectations. Due to Sui’s
complex access controls schema, particular care must be taken to document the
access controls (see appendix F and appendix G).

Finding Severities and Categories

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 4

Medium 2

Low 2

Informational 7

CATEGORY BREAKDOWN

Category Count

Access Controls 4

Cryptography 4

Data Validation 4

Error Reporting 2

Patching 1

Trail of Bits 7 Bluefin Security Assessment
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Sam Greenup, Project Manager
dan@trailofbits.com sam.greenup@trailofbits.com

The following engineers were associated with this project:

Josselin Feist, Consultant Anish Naik, Consultant
Josselin@trailofbits.com anish.naik@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

March 17, 2023 Pre-project kickoff call

March 24, 2023 Status update meeting #1

March 31, 2023 Status update meeting #2

April 7, 2023 Status update meeting #3

April 17, 2023 Delivery of report draft

April 17, 2023 Report readout meeting

June 23, 2023 Delivery of final report

Trail of Bits 8 Bluefin Security Assessment
PUBLIC

mailto:dan@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of the Bluefin Sui exchange
contracts. Specifically, we sought to answer the following non-exhaustive list of questions:

● Do the contracts follow Move/Sui best practices and correctly use the object
ownership paradigm?

● Are the Sui objects and capabilities properly used for access controls?

● Does the Sui diverge from the Solidity implementation or the mathematical
specification?

● Are the arithmetic operations robust?

● What are the unknowns of using Sui/Move?

Trail of Bits 9 Bluefin Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the following target.

Exchange Contracts

Repository https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui

Version 76e07b9

Type Sui Move

Platform Sui

Trail of Bits 10 Bluefin Security Assessment
PUBLIC

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches and their results include the following:

● trades/. The trades/ folder holds three modules: isolated_trading,
isolated_liquidation, and isolated_adl. The isolated_trading module is
used to increase, decrease, or reverse a position on a perpetual market. The
isolated_liquidation module is used to liquidate positions that have more
losses than margin. Finally, the isolated_adl module is used to perform
automated deleveraging (ADL) of high-risk positions. We performed a manual
analysis of the three modules and investigated the following:

○ We reviewed the arithmetic operations across all modules to identify any
rounding errors. This led to the discovery of four issues that highlight the
inconsistency in the order of operations, as well as incorrect rounding
direction of certain calculations that may lead to a loss of funds
(TOB-BLUEFIN-4, TOB-BLUEFIN-5, TOB-BLUEFIN-12, TOB-BLUEFIN-13). Our
arithmetic analysis focused primarily on the isolated_trading module;
similar issues are likely to be present in the isolated_liquidation and
isolated_adl modules.

○ We reviewed the arithmetic operations across all modules to ensure that
they are compliant with the mathematical specification. This investigation did
not lead to any findings.

○ We reviewed the isolated_trading::Order hashing schema. We
explored ways to replay orders, or bypass the signature validation. This led to
the discovery of a potential replay attack (TOB-BLUEFIN-1).

○ We reviewed whether it was possible to force a liquidation on a user position.
This investigation did not lead to any findings.

○ We reviewed the order validation process across all modules to ensure that
the process was compliant with the specification and did not allow an
invalid/malicious order to be accepted as valid. This investigation did not lead
to any findings.

○ We reviewed the various objects and access controls across these modules to
identify any deviations from Sui best practices or opportunities to bypass
access controls. This led to the discovery of TOB-BLUEFIN-7, which highlights
the unnecessary use of Move abilities in certain objects, and TOB-BLUEFIN-8,

Trail of Bits 11 Bluefin Security Assessment
PUBLIC

which highlights that the isolated_liquidation::trade function is
callable by anyone.

● margin_bank. The margin_bank module holds user funds across all perpetual
markets. Users are able to deposit and withdraw from the bank. Position updates
and liquidations result in bank transfers to and from a perpetual market and user
positions. We performed a manual analysis of the module and investigated the
following:

○ We reviewed the deposit and withdrawal flows to identify any opportunities
to steal funds. This investigation did not lead to any findings.

○ We reviewed the precision conversions between token balances and
BankAccount balances to identify any opportunities to steal funds and any
instances of precision loss or incorrect data validation. This investigation did
not lead to any findings.

○ We reviewed the access controls to identify any opportunities for bypass.
This investigation did not lead to any findings.

● exchange. The exchange module is the entrypoint for all user interactions. Position
updates, liquidations, ADL, and creation of new perpetual markets are all done
through the exchange. We performed a manual analysis of the module and
investigated the following:

○ We reviewed each entry function’s input parameters to ensure that mutable
and immutable references to objects are used correctly. This investigation
did not lead to any findings.

○ We reviewed each entry function to ensure that all the necessary operations
are performed in-order to execute the action and transfer the funds between
the parties. This investigation did not lead to any findings.

● perpetual. The perpetual module represents a perpetual market. The module
holds the state of the perpetual market with a variety of privileged functions to
change perpetual-specific parameters. Note that users do not directly interact with
the perpetual module and instead must go through the exchange module. We
performed a manual analysis of the module and investigated whether it was
possible to perform an access control bypass attack on any of the functions. This
investigation did not lead to any findings.

● position. The position module represents a user position. Note that the
positions for a perpetual market are stored under the perpetual::Perpetual
object. The module contains functions to compute various economic parameters

Trail of Bits 12 Bluefin Security Assessment
PUBLIC

and some friend-controlled functions to update a user position. We performed a
manual analysis of the module and investigated the following:

○ We reviewed the arithmetic calculations performed in the module to identify
whether any of them deviate from the specification. This led to the discovery
of TOB-BLUEFIN-10, which highlights that the margin ratio validation does
not match the specification.

○ We reviewed the access controls of the module to identify whether it was
possible to update another user’s position. This investigation did not lead to
any findings.

● evaluator. The evaluator module holds the TradeChecks object, which aids in
trade verification. A TradeChecks object is owned by a perpetual::Perpetual
object. Thus, each perpetual market can use its own TradeChecks object to validate
trades and ensure that perpetual-specific parameter updates are valid. We
performed a manual analysis of the module and investigated whether the
verification functions comply with the mathematical specification and do not allow
for invalid trades to be executed. These investigations did not lead to any findings.

● roles. The roles module holds the various capabilities associated with the system.
The exchange admin, the owner of the ExchangeAdminCap capability, has the
ability to update the owner of each capability (appendix F). We performed a manual
analysis of the module and investigated whether there were any opportunities for
access control bypassing and whether all other modules verified authorization to a
specific action by using the CapabilitiesSafe. These investigations did not lead
to any findings.

● guardian. The guardian module holds functions that are callable only by the
Guardian, the owner of the ExchangeGuardianCap. The Guardian is able to
(un)pause withdrawals and enable/disable trading on a perpetual market. We
performed a manual analysis of the module and identified that the guardian
module adds an unnecessary layer of complexity to the access controls of the
system (TOB-BLUEFIN-11).

● price_oracle. The price_oracle module represents an on-chain oracle.
Currently, the owner of the PriceOracleOperatorCap is responsible for updating
the on-chain price for a given asset. We performed a manual analysis of the module
and investigated the following:

○ We reviewed the arithmetic operation to calculate the price difference
between updates to ensure that there are no edge cases that could violate
system properties. This investigation did not lead to any issues.

Trail of Bits 13 Bluefin Security Assessment
PUBLIC

○ We reviewed the access controls to ensure that there were no opportunities
for price manipulation. This investigation did not lead to any issues.

● Arithmetic modules. There are three modules that contain primarily arithmetic
operations: library, margin_math, and signed_number. The library module
contains basic helper functions for basic arithmetic operations. The margin_math
module contains helper functions related to margin calculations. Finally, the
signed_number module holds arithmetic functions for signed numbers. We
performed a manual analysis of the module and investigated whether any of the
arithmetic operations had incorrect rounding, unexpected overflows, or violated any
system properties. These investigations did not lead to any issues.

● error. The error module holds all the custom errors used for the protocol. We
performed a manual analysis of the module and investigated whether there is any
overlap in custom error codes. This investigation did not lead to any issues.

● test_usdc. The test_usdc module holds a mock implementation of the USDC
token since the Sui blockchain does not yet support it. We performed a manual
review of this module and investigated whether the module used the witness
pattern correctly. This investigation did not lead to any findings.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● Missing features. Some critical features, such as applying the funding rate and
checking for trade expiration, have not been implemented yet. Thus, these features
were not reviewed during the audit.

● Bugs in Sui and Move. We were unable to review any issues that may stem from
any underlying, latent bugs in either Sui or Move. Due to the nascency of the
technology, we recommend that the Bluefin team keep up to date with the latest
developments in the ecosystem.

● Arithmetics in isolated_liquidation and isolated_adl. We were unable to
obtain complete coverage of the arithmetic operations in isolated_liquidation
and isolated_adl. The issues found in the isolated_trading module
(out-of-order operations and lack of rounding considerations) are likely present in
these modules.

● test. The test module holds a few functions that perform public key recovery and
order hashing. Since this module does not interact with the core protocol, it was
considered out of scope for this audit.

Trail of Bits 14 Bluefin Security Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The implementation of critical arithmetic operations
fails to adhere to the expected best practices. First, the
arithmetic operations suffer from two systematic risks:
lack of consistency in the operation order, and lack of
consideration for the rounding direction. These risks
may lead to a loss of funds for the protocol. Second,
the trade functions are dense in complexity and
computation. This lack of modularity prevents their
testing and makes their review more difficult. Third,
while documentation was provided through a Notion
page, there is a lack of inline code documentation.
Finally, some of the variable naming would also benefit
from clarification; for example, oiOpen is described as
an “open interest,” but it is not an open interest in the
traditional sense).

Weak

Auditing Bluefin provided an incident response plan and
monitoring strategy for the Solidity counterpart, but
does not currently have the equivalent for the Sui
implementation. This is in part due to the young status
of the ecosystem.

Further
Investigation
Required

Authentication /
Access Controls

Bluefin relies on Sui objects for most of its access
controls. It splits the controls over multiple actors,
reducing the impact of partial compromise. However,
access controls-based Sui objects and modifiers (i.e.,
friend) require documentation to ensure coherence;
this documentation was lacking (see appendix F and
appendix G).

Moderate

Complexity
Management

The scope of most functions is clear, and the modules
provide sufficient logic boundaries and abstraction.

Moderate

Trail of Bits 15 Bluefin Security Assessment
PUBLIC

However some functions (e.g.,
isolated_trading::trade) should be refactored to
be made more modular. This would simplify the review
process and testing.

Decentralization The Bluefin protocol heavily relies on an off-chain
orderbook to match orders between makers and
takers. Thus, the offchain system poses a single point
of failure. If the orderbook service crashes or gets
compromised, the on-chain system is no longer usable.

Weak

Documentation The public documentation covers the high-level
information about the protocol, and the provided
Notion documentation covers the arithmetic formulas.
However, there is a lack of inline documentation to
match the formulas to their implementation and
explain the various functions and the purpose of their
input parameters. Similarly, the access controls of the
Sui objects/modifiers is not documented. Finally, the
system would benefit from architectural diagrams to
explain how the different modules interact.

Moderate

Front-Running
Resistance

Front-running risks are limited, as most operations
outside of liquidation require privileges. Outside of
market orders, the price of orders is properly bound to
limit the impact of price manipulation. However,
additional documentation should be provided to
highlight risks related to the Oracle’s price update and
relevant MEV risks.

Satisfactory

Low-Level
Manipulation

There is no assembly or low-level manipulation in the
codebase.

Not
Applicable

Testing and
Verification

The system relies uniquely on integration tests that
were ported from the Solidity counterpart. However,
the codebase lacks Sui unit tests. The protocol should
leverage the test_scenario module to obtain
satisfactory unit test coverage. Another area that
should be explored is the usage of the Move’s built-in
prover to validate critical system properties.

Moderate

Trail of Bits 16 Bluefin Security Assessment
PUBLIC

https://learn.bluefin.io
https://github.com/MystenLabs/sui/blob/devnet-0.27.1/crates/sui-framework/sources/test/test_scenario.move

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Order hashing schema is vulnerable to replay
attacks

Cryptography High

2 Unclear usage of token decimal precision Data Validation Informational

3 Order type (maker/taker) is not enforced Cryptography Medium

4 Inconsistent order of operations when opening or
increasing a position

Cryptography High

5 Fees in apply_isolated_margin has an incorrect
rounding direction

Cryptography Low

6 Error handling deviates from Sui best practices Error Reporting Informational

7 Unnecessary use of Move abilities Error Reporting Informational

8 The liquidation module’s trade function is callable
by any module

Access Controls Low

9 The create_position function is lacking access
controls

Access Controls Informational

10 Margin ratio validation deviates from the
mathematical specification

Data Validation Informational

11 Overcomplicated access control mechanism for
the Guardian

Access Controls Informational

12 Inconsistent order of operations when flipping
positions

Data Validation High

Trail of Bits 17 Bluefin Security Assessment
PUBLIC

13 Incorrect rounding in the profit and loss
computation allows to withdraw more assets than
expected

Data Validation Medium

14 Improper market order design Access Controls High

15 Sui lacks security maturity Patching Informational

Trail of Bits 18 Bluefin Security Assessment
PUBLIC

Detailed Findings

1. Order hashing schema is vulnerable to replay attacks

Status: Resolved

Severity: High Difficulty: High

Type: Cryptography Finding ID: TOB-BLUEFIN-1

Target: trades/isolated_trading.move

Description
The hashing schema used to sign the orders is insufficient to protect against replay attacks.

Every order’s hash is signed by the order’s maker:

fun verify_order_signature(subAccounts: &SubAccounts, maker:address,
hash:vector<u8>, signature: vector<u8>, isTaker:u64):address{

let publicKey = ecdsa_k1::ecrecover(&signature, &hash);

let publicAddress = library::get_public_address(publicKey);

assert!(maker == publicAddress || roles::is_sub_account(subAccounts, maker,
publicAddress), error::order_has_invalid_signature(isTaker));

return publicAddress
}

Figure 1.1: trades/isolated_trading.move#L445-L454

The hashing schema of the order contains the following elements:

fun get_hash(order:Order): vector<u8>{

/*
serializedOrder
[0,15] => price (128 bits = 16 bytes)
[16,31] => quantity (128 bits = 16 bytes)
[32,47] => leverage (128 bits = 16 bytes)
[48,63] => expiration (128 bits = 16 bytes)
[64,79] => salt (128 bits = 16 bytes)
[80,99] => maker (160 bits = 20 bytes)
[100,119] => market (160 bits = 20 bytes)

Trail of Bits 19 Bluefin Security Assessment
PUBLIC

[120,120] => reduceOnly (1 byte)
[121,121] => isBuy (1 byte)
*/

Figure 1.2: trades/isolated_trading.move#L353-L366

This hashing schema lacks protections against signatures replay, in particular:

● If the contract is redeployed, the same signature can be used on multiple contracts.
● There is no domain-specific information, allowing users to re-use signatures that

were generated outside of Bluefin purposes.

Exploit Scenario
Eve creates an airdrop that requires a signature. The signature’s size collides with Bluefin's
hashing schema. Alice signs the airdop's data. Eve re-uses the signature to force a trade on
Alice’s behalf.

Recommendations
Short term, add the contract’s address to the signature schema and pad the data to be
signed with a domain-specific text (e.g., Bluefin:).

Long term, consider implementing a solution similar to EIP-712.

References
● https://github.com/ethereum/solidity-underhanded-contest/blob/master/2022/sub

missions_2022/submission10_SantiagoPalladino/SPOILER.md

Trail of Bits 20 Bluefin Security Assessment
PUBLIC

https://eips.ethereum.org/EIPS/eip-712
https://github.com/ethereum/solidity-underhanded-contest/blob/master/2022/submissions_2022/submission10_SantiagoPalladino/SPOILER.md
https://github.com/ethereum/solidity-underhanded-contest/blob/master/2022/submissions_2022/submission10_SantiagoPalladino/SPOILER.md

2. Unclear usage of token decimal precision

Status: Resolved

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-BLUEFIN-2

Target: margin_bank.move

Description
The margin bank has unclear and undocumented manipulation on the amount’s decimals.

deposit_to_bank expects the amount to be deposited to be in a six-decimal unit:

/*
* @notice Deposits collateral token from caller's address
* to provided account address in the bank
* @dev amount is expected to be in 6 decimal units as
* the collateral token is USDC
*/
entry fun deposit_to_bank(bank: &mut Bank, destination: address, amount: u64, coin:
&mut Coin<TUSDC>, ctx: &mut TxContext) {

Figure 2.1: margin_bank.move#L99-L105

withdraw_from_bank expects the same behavior from its amount parameter, but the
decimal information is not documented:

/**
* @notice Performs a withdrawal of margin tokens from the the bank to a provided
address
*/
entry fun withdraw_from_bank(bank: &mut Bank, destination: address, amount: u128,
ctx: &mut TxContext)

Figure 2.2: margin_bank.move#L150-L153

As a result, a user can call withdraw_from_bank with an incorrect amount value.

Moreover, when a user deposits USDC to the margin_bank module, the deposited amount
is multiplied by 1,000, and the depositor’s BankAccount balance is debited by that value
(figure 2.3). The reverse is true for withdrawals.

Trail of Bits 21 Bluefin Security Assessment
PUBLIC

// convert 6 decimal unit amount to 9 decimals
amount = amount * 1000;

Figure 2.3: margin_bank.move#L131-132

There are two concerns with this approach:

1. Using a hard-coded value of 1,000 is error-prone. In case of a typo or a deviation in
the required precision for a BankAccount, failing to change all lines where 1,000 is
used may lead to a loss of funds or undefined behavior.

2. The rationale for the precision conversion is undocumented.

Exploit Scenario
The Bluefin Foundation team decides to increase the precision of a BankAccount by a
magnitude of 1,000. This change is done correctly in the
margin_bank::deposit_to_bank function but not in the
margin_bank::withdraw_from_bank function. Because of this deviation, Eve is able to
drain all the funds from the bank.

Recommendations
Short term, document the decimals expectation for all the functions. Create a const value
that holds the magnitude difference between a USDC coin balance and a BankAccount
balance. Additionally, document the rationale behind the precision difference.

Long term, create helper functions that can convert to and from arbitrary decimal
precisions. This will allow for greater flexibility as the codebase continues to mature.

Trail of Bits 22 Bluefin Security Assessment
PUBLIC

3. Order type (maker/taker) is not enforced

Status: Resolved

Severity: Medium Difficulty: High

Type: Cryptography Finding ID: TOB-BLUEFIN-3

Target: trades/isolated_trading.move

Description
The hashing schema used to sign the order does not make a distinction between a maker
and taker order, which force maker orders to pay a taker fee (or vice versa).

Every order is hashed, and the signature of the hash must be provided by the order’s
creator:

// // get order hashes
let makerHash = get_hash(data.makerOrder);
let takerHash = get_hash(data.takerOrder);

Figure 3.1: trades/isolated_trading.move#L156-L158

The hashing schema of the order contains the following elements:

fun get_hash(order:Order): vector<u8>{

/*
serializedOrder
[0,15] => price (128 bits = 16 bytes)
[16,31] => quantity (128 bits = 16 bytes)
[32,47] => leverage (128 bits = 16 bytes)
[48,63] => expiration (128 bits = 16 bytes)
[64,79] => salt (128 bits = 16 bytes)
[80,99] => maker (160 bits = 20 bytes)
[100,119] => market (160 bits = 20 bytes)
[120,120] => reduceOnly (1 byte)
[121,121] => isBuy (1 byte)
*/

Figure 3.2: trades/isolated_trading.move#L353-L366

The hash does not include any indication that the order is a maker or a taker. A maker’s
signature can be used for a taker order (and vice versa).

Trail of Bits 23 Bluefin Security Assessment
PUBLIC

Furthermore, taker and maker orders have a different fees:

let makerFee = perpetual::makerFee(perp);
let takerFee = perpetual::takerFee(perp);

Figure 3.3: trades/isolated_trading.move#L145-L146

As a result, a malicious settlement operator can force the maker orders to pay a taker fee
(and vice versa).

Exploit Scenario
Eve creates a perpetual that takes a 0% fee on maker orders and a 20% on taker orders.
Bob creates a maker order. Eve uses Bob’s order as a taker, thereby forcing Bob to pay the
20% fee.

Recommendations
Short term, add the order type (maker/taker) in the order’s hash.

Long term, document the order’s related variables and the hashing schema, and ensure
that all the order related variables are signed.

Trail of Bits 24 Bluefin Security Assessment
PUBLIC

4. Inconsistent order of operations when opening or increasing a position

Status: Resolved

Severity: High Difficulty: Medium

Type: Cryptography Finding ID: TOB-BLUEFIN-4

Target: trades/isolated_trading.move

Description
Inconsistencies in the order of operations of computing the margin and transferring the
assets cause their values to differ.

When opening a position, or increasing a position size, fundsFlow is the amount of assets
to be transferred from the user, and margin the amount of collateral credited in the
position:

● fundsFlow = quantity * ((price * mro) + feePerUnit)

● margin = (quantity * price) * mro)

marginPerUnit = library::base_mul(fill.price, mro);
fundsFlow = signed_number::from(library::base_mul(fill.quantity, marginPerUnit +
feePerUnit), true);

[..]

position::set_margin(balance, margin +
library::base_mul(library::base_mul(fill.quantity, fill.price), mro));

Figure 4.1: trades/isolated_trading.move#L513-L518

If the feePerUnit is zero, these equation can be reduced to the following:

● fundsFlow = quantity * (price * mro)

● margin = (quantity * price) * mro)

Here, both fundsFlow and margin should be equal, meaning that the user’s position will
be increased by the exact amount of assets transferred. The multiplications are rounding
down:

Trail of Bits 25 Bluefin Security Assessment
PUBLIC

/**
* @dev Multiplication by a base value with the result rounded down
*/
public fun base_mul(value : u128, baseValue: u128) : u128 {

return (value * baseValue) / BASE_UINT
}

Figure 4.2: library.move#L24-L29

Because the order of operations differs between (quantity * (price * mro) and
(quantity * price) * mro)), the accumulated loss of precision can cause the
operations to result in different values, and fundsFlow =! margin.

An attacker can abuse this divergence to make an order for which margin is greater than
fundsFlow, allowing the attacker to be credited for more tokens than they sent.

Appendix C contains test cases triggering this issue.

Exploit Scenario
Bob creates a perpetual that takes a 0% fee for makers. Eve is able to create orders that
generate 0.01% more margin than the assets deposited. Eve generates thousands of trades
over time, and her position has a significantly greater margin than the assets she sent.

Recommendations
Short term, use the same order of operation to compute fundsFlow and margin.

Long term, we recommend the following steps:

● Add code documentation for the arithmetic formulas.
● Avoid computing the same formulas multiple times.
● Refactor the arithmetic operations to make them modular and ease their testing

(see appendix J).
● Investigate fuzzing opportunities in Sui.

Trail of Bits 26 Bluefin Security Assessment
PUBLIC

5. Fees in apply_isolated_margin has an incorrect rounding direction

Status: Unresolved

Severity: Low Difficulty: Medium

Type: Cryptography Finding ID: TOB-BLUEFIN-5

Target: trades/isolated_trading.move

Description
The rounding direction of the fees operation in apply_isolated_margin benefits the
user instead of the protocol.

All multiplications and division operations that compute the trade’s fee are rounding down
in apply_isolated_margin (including base_mul and base_div):

fundsFlow = signed_number::from(library::base_mul(fill.quantity, marginPerUnit +
feePerUnit), true);

signed_number::mul_uint(
signed_number::add_uint(

signed_number::negate(pnlPerUnit),
feePerUnit),

fill.quantity),

[..]

signed_number::sub_uint(
signed_number::mul_uint(

signed_number::add_uint(
signed_number::negate(pnlPerUnit),
closingFeePerUnit),

qPos),
margin),

library::base_mul(
newQPos,
library::base_mul(

fill.price,
mro)

+ feePerUnit)

[..]

Trail of Bits 27 Bluefin Security Assessment
PUBLIC

feePerUnit = library::base_div(
library::base_mul(qPos, closingFeePerUnit) +
library::base_mul(newQPos,feePerUnit),
fill.quantity

);

[..]

fee: library::base_mul(feePerUnit, fill.quantity)

Figure 4.1: trades/isolated_trading.move#L513-L518

As a result, the rounding benefits the user and not the system. In particular, if the quantity
is low, the fee can round toward zero.

Appendix D contains a test case to trigger this issue.

Exploit Scenario
Eve creates thousands of orders for a quantity of 1 unit. The fees round down and are
equal to zero. As a result, Eve made thousands of trades without paying a fee to the
operator.

Recommendations
Short term, round up for all fee-related operations.

Long term:
● Add code documentation for the arithmetic formulas.
● Avoid computing multiple times the same formulas.
● Refactor the arithmetic operations to make them modular and ease their testing

(see appendix J).
● Investigate fuzzing opportunities in Sui.

Trail of Bits 28 Bluefin Security Assessment
PUBLIC

6. Error handling deviates from Sui best practices

Status: Unresolved

Severity: Informational Difficulty: Low

Type: Error Reporting Finding ID: TOB-BLUEFIN-6

Target: error.move

Description
The error handling of the protocol uses functions to return specific error codes instead of
defining error codes using constants; this is a deviation from Sui’s best practices.

Based on a review of a variety of standard Sui modules (e.g., coin.move), the best practice
for custom errors is to define them as follows:

/// A type passed to create_supply is not a one-time witness.
const EBadWitness: u64 = 0;
/// Invalid arguments are passed to a function.
const EInvalidArg: u64 = 1;
/// Trying to split a coin more times than its balance allows.
const ENotEnough: u64 = 2;

Figure 6.1: coin.move#L19-L24

Note that each custom error is defined as a const u64 and starts with a capital letter E.

However, this is not the case for the custom errors defined in the error module:

module bluefin_foundation::error {

// Setter Errors
public fun min_price_greater_than_zero() : u64 {

return 1
}

public fun min_price_less_than_max_price() : u64 {
return 2

}

public fun max_price_greater_than_min_price() : u64 {
return 9

}

Trail of Bits 29 Bluefin Security Assessment
PUBLIC

Figure 6.2: error.move#L1-L14

Recommendations
Short term, create const u64 values for each custom error and update the contracts to use
them accordingly.

Long term, ensure that the protocol follows Sui Move best practices and document any
deviations.

Trail of Bits 30 Bluefin Security Assessment
PUBLIC

7. Unnecessary use of Move abilities

Status: Resolved

Severity: Informational Difficulty: Low

Type: Error Reporting Finding ID: TOB-BLUEFIN-7

Target: bluefin_foundation

Description
A number of structs within the protocol have unnecessary Move abilities.

For example, the TradeResponse struct has the store ability. Based on its usage in the
protocol, this ability is not needed.

struct TradeResponse has copy, store, drop {
makerFundsFlow: Number,
takerFundsFlow: Number,
fee: u128

}

Figure 7.1: trades/isolated_trading.move#L99-103

The store ability should be added to values that need to be stored inside Sui global
storage. However, TradeResponse is not stored at top-level storage or within any struct;
thus, the ability is not needed.

A similar argument can be made for the following structs in the isolated_trading
module:

● OrderStatus does not need the drop ability.
● IMResponse does not need the store ability.

Note that the breadth of this issue was not checked across the entire codebase, and
additional structures may have the same issue.

Recommendations
Short term, review the Move abilities provided to each struct in the protocol and identify
which ones are unnecessary.

Trail of Bits 31 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/main/bluefin_foundation/sources/trades/isolated_trading.move#L99-L103

Long term, ensure that the abilities provided to each struct are reviewed periodically since
an ability may no longer be necessary as the codebase evolves.

Trail of Bits 32 Bluefin Security Assessment
PUBLIC

8. The liquidation module’s trade function is callable by any module

Status: Resolved

Severity: Low Difficulty: High

Type: Access Controls Finding ID: TOB-BLUEFIN-8

Target: trades/isolated_liquidation.move

Description
The isolated_liquidation::trade function should be callable only by the exchange
module. However, since the function is missing the friend modifier, it is callable by any
module, increasing the likelihood of mistakes when code is updated.

public fun trade(sender: address, perp: &mut Perpetual, data:TradeData):
TradeResponse{

Figure 8.1: trades/isolated_liquidation.move#L84

The ability to call the trade function directly would allow an attacker to manipulate a
liquidatable user’s position without actually performing the liquidation. Any honest
liquidation can be front-run and cause the liquidation attempt to revert. This would make
the position no longer liquidatable and also increase the exposure of the protocol to losses.

It is important to note that, since another module cannot craft a malicious TradeData
object, this bypass is currently not exploitable. If, however, the
isolated_liquidation::pack_trade_data function is updated to no longer have the
friend modifier, the likelihood of an access control bypass significantly increases.

Exploit Scenario
The Bluefin team decides to make the isolated_liquidation::pack_trade_data
function callable by any module to improve the composability/accessibility of the platform.
However, this allows a malicious module to create their own TradeData object and call
isolated_liquidation::trade to update a liquidatable user’s position, causing any
subsequent honest liquidation attempts to revert.

Recommendations
Short term, add the friend modifier to the isolated_liquidation::trade function.

Trail of Bits 33 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/main/bluefin_foundation/sources/trades/isolated_liquidation.move#L84

Long term, extend the Sui testing suite to ensure that functions that require authorization
are only callable by select modules/actors. Document the access controls expectations (see
appendix H and appendix I).

Trail of Bits 34 Bluefin Security Assessment
PUBLIC

9. The create_position function is lacking access controls

Status: Resolved

Severity: Informational Difficulty: High

Type: Access Controls Finding ID: TOB-BLUEFIN-9

Target: position.move

Description
The position::create_position function, which adds a new position to a given
positions table (figure 9.1), has fragile access controls:

public fun create_position(perpID:ID, positions: &mut Table<address, UserPosition>,
addr: address){

Figure 9.1: position.move#L170

This function has no access controls, allowing any module to call it. One of its parameters is
a table containing UserPosition objects. The perpetual’s positions are accessible only
through the perpetual::positions function, which has the friend modifier:

public (friend) fun positions(perp:&mut Perpetual):&mut Table<address,UserPosition>{
return &mut perp.positions

}

Figure 9.2: perpetual.move#L191-193

As a result, while the function is callable by any module due to its lack of the friend
modifier, the restriction on UserPosition limits its usage.

This situation highlights an important tradeoff for friend modules on non-state changing or
getter functions, such as perpetual::positions. Adding the friend modifier decreases
the composability of the system, whereas removing it softens the access controls of the
system. Additionally, if a getter function returns a mutable reference to an object, an
attacker may be able to manipulate the underlying data.

Recommendations
Short term, add the friend modifier to the position::create_position function.

Trail of Bits 35 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/main/bluefin_foundation/sources/position.move#L170
https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/main/bluefin_foundation/sources/perpetual.move#L191-L193

Long term, add the friend modifier to all non-state changing functions with
considerations for any risks to the composability of the system. Document the access
controls expectations (see appendix H and appendix I).

Trail of Bits 36 Bluefin Security Assessment
PUBLIC

10. Margin ratio validation deviates from the mathematical specification

Status: Resolved

Severity: Informational Difficulty: Medium

Type: Data Validation Finding ID: TOB-BLUEFIN-10

Target: position.move

Description
The margin ratio (MR) validation deviates from the mathematical specification, which may
lead to undefined behavior or introduce economic risks.

When a user wishes to increase, reverse, or reduce their position, the
isolated_trading::trade function will call the position::verify_collat_checks
function to ensure that the position’s MR is sufficient for the trade that the user wishes to
perform. If the MR is too low, the transaction reverts and the trade is not completed
on-chain.

When evaluating the MR, it is important to check if it is less than or equal to the
Maintenance Margin Ratio (MMR). If this is the case, the user’s position size can only
decrease or stay the same. If the position size has increased, the transaction should revert
(figure 10.1).

// Case III: For MR <= MMR require qPos to go down or stay the same
assert!(

signed_number::gte_uint(currentMarginRatio, mmr)
||
(

initialPosition.qPos >= currentPosition.qPos
&&
initialPosition.isPosPositive == currentPosition.isPosPositive

),
error::mr_less_than_imr_position_can_only_reduce(isTaker)

);

Figure 10.1: position.move#L216-L226

However, note that the check in figure 10.1 asserts that the MR must be greater than or
equal to the MMR. This deviates from the mathematical specification and implies that a
user may be able to increase their position size while having a MR that is equal to the MMR.

Trail of Bits 37 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/main/bluefin_foundation/sources/position.move#L216-L226

Note that bypassing this check is not currently possible because the previous MR checks
prevent any violations to critical economic properties.

Recommendations
Short term, update the assertion to
assert!(signed_number::gt_uint(currentMarginRatio, mmr).

Long term, ensure that all mathematical operations comply with the specification.

Trail of Bits 38 Bluefin Security Assessment
PUBLIC

11. Overcomplicated access control mechanism for the Guardian

Status: Resolved

Severity: Informational Difficulty: Low

Type: Access Controls Finding ID: TOB-BLUEFIN-11

Target: guardian.move

Description
The access control design for Guardian-related privileges is overcomplicated, which makes
it more difficult to maintain and more error-prone.

The owner of the ExchangeGuardianCap capability, the Guardian, is responsible for
(un)pausing withdrawals (guardian::set_withdrawal_status) and enabling/disabling
trading on a given perpetual market (guardian::set_trading_permit).

module bluefin_foundation::guardian {
use bluefin_foundation::roles::{CapabilitiesSafe, ExchangeGuardianCap};
use bluefin_foundation::margin_bank::{Self, Bank};
use bluefin_foundation::roles;
use bluefin_foundation::perpetual::{Self, Perpetual};

entry fun set_withdrawal_status(safe: &CapabilitiesSafe, guardian:
&ExchangeGuardianCap, bank: &mut Bank, isWithdrawalAllowed: bool) {

roles::check_guardian_validity(safe, guardian);
margin_bank::set_withdrawal_status(bank,isWithdrawalAllowed);

}

entry fun set_trading_permit(safe: &CapabilitiesSafe, guardian:
&ExchangeGuardianCap, perp: &mut Perpetual, isTradingPermitted: bool) {

roles::check_guardian_validity(safe, guardian);
perpetual::set_trading_permit(perp, isTradingPermitted);

}
}

Figure 11.1: position.move#L1-L16

The guardian::set_withdrawal_status function will validate that the caller of the
function is in fact the Guardian via roles::check_guardian_validity and will then call
margin_bank::set_withdrawal_status. The
margin_bank::set_withdrawal_status must be protected with an additional friend
modifier so that only the guardian module can call into it (figure 11.2).

Trail of Bits 39 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/main/bluefin_foundation/sources/guardian.move#L1-L16

public (friend) fun set_withdrawal_status(bank: &mut Bank, isWithdrawalAllowed:
bool) {

// setting the withdrawal allowed flag
bank.isWithdrawalAllowed = isWithdrawalAllowed;

emit(WithdrawalStatusUpdate{status: isWithdrawalAllowed});
}

Figure 11.2: margin_bank#L88-93

However, this access control design is overcomplicated since the guardian module is
unnecessary. Allowing the Guardian to directly call into the
margin_bank::set_withdrawal_status function removes the need to use the friend
modifier and removes one module-to-module transaction.

A similar reasoning can be applied to the perpetual::set_trading_permit function.

Recommendations
Short term, remove the guardian module and allow the Guardian to directly call into the
margin_bank::set_withdrawal_status and the perpetual::set_trading_permit
functions by using roles::check_guardian_validity. Additionally, remove the friend
modifier from each of these functions.

Long term, identify all privileged operations that can be simplified by removing a layer of
complexity. For example, the initialization of a new perpetual market does not need to
happen via the exchange module. Allowing the exchange admin to directly call a protected
perpetual::initialize function removes the need for one friend modifier and one
module-to-module transaction.

Trail of Bits 40 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/main/bluefin_foundation/sources/margin_bank.move#L88-L93

12. Inconsistent order of operations when flipping positions

Status: Resolved

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-BLUEFIN-12

Target: trades/isolated_trading.move

Description
Inconsistencies in the order of operations of computing the margin and transferring the
assets during a flipping operation cause their values to differ.

When flipping a position, fundsFlow is the amount of assets to be transferred from the
user, and margin the amount of collateral credited in the position:

● fundsFlow = (-pnlPerUnit + fee) - margin + (quantity - qPos) *
(price * mro)

● margin = ((quantity - qPos) * price) * mro

fundsFlow = signed_number::add_uint(
signed_number::sub_uint(

signed_number::mul_uint(
signed_number::add_uint(

signed_number::negate(pnlPerUnit),
closingFeePerUnit),

qPos),
margin),

library::base_mul(
newQPos,
library::base_mul(

fill.price,
mro)

+ feePerUnit)
);

Figure 12.1: trades/isolated_trading.move#L578-L592

If the price of the asset did not change, and the fee are zero, fundsFlow can be reduced to
the following:

● 0 - margin + (quantity - qPos) * (price * mro)

Trail of Bits 41 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/9af90b8d701be62a6272f4d79a91afe6f3349fa5/bluefin_foundation/sources/trades/isolated_trading.move#L578-L592

Here, both (quantity - qPos) * (price * mro) from fundsFlow and ((quantity
- qPos) * price) * mro from margin should be equal, meaning that the user’s
position will be increased by the exact amount of assets transferred. The multiplications
round down:

/**
* @dev Multiplication by a base value with the result rounded down
*/
public fun base_mul(value : u128, baseValue: u128) : u128 {

return (value * baseValue) / BASE_UINT
}

Figure 12.2: library.move#L24-L29

Because the order of operations differs between (quantity * (price * mro) and
(quantity * price) * mro)), the accumulated loss of precision can cause the
operations to result in different values.

An attacker can abuse this divergence to make an order for which margin is greater than
fundsFlow, allowing the attacker to be credited for more tokens than they sent.

This issue is similar to TOB-BLUEFIN-4.

Appendix E contains test cases triggering this issue.

Exploit Scenario
Bob creates a perpetual that takes a 0% fee for makers. Eve is able to flip orders that
generate 0.01% more margin than assets deposited. Eve generates thousands of trades
over time, and her position has a significantly greater margin than the assets she sent.

Recommendations
Short term, use the same order of operation to compute fundsFlow and margin.

Long term, add code documentation for the arithmetic formulas. Avoid computing multiple
times the same formulas. Refactor the arithmetic operations to make them modular and
ease their testing (see appendix J). Investigate fuzzing opportunities in Sui.

Trail of Bits 42 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/9af90b8d701be62a6272f4d79a91afe6f3349fa5/bluefin_foundation/sources/library.move#L24-L29

13. Incorrect rounding in the profit and loss computation allows to withdraw
more assets than expected

Status: Unresolved

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-BLUEFIN-13

Target: trades/isolated_trading.move

Description
The rounding direction of the fees operation in the profit and loss computation can benefit
the user instead of the protocol.

For a reduce order on a long position, fundsFlow (the amount of assets transferred) is
defined by the following formula:

● fundsFlow = (- pnlPerUnit + feePerUnit) * quantity - margin *
quantity / qPos

fundsFlow = signed_number::sub_uint(
signed_number::mul_uint(

signed_number::add_uint(
signed_number::negate(pnlPerUnit),
feePerUnit),

fill.quantity),
(margin * fill.quantity) / qPos);

Figure 13.1: trades/isolated_trading.move#L542-L548

If the fee is zero, the formula can be reduced to the following:

● fundsFlow = - pnlPerUnit * quantity - margin * quantity / qPos

Here, pnlPerUnit represents the profit and loss for the position:

● pnlPerUnit = price - oiOpen / qPos

Trail of Bits 43 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/9af90b8d701be62a6272f4d79a91afe6f3349fa5/bluefin_foundation/sources/trades/isolated_trading.move#L542-L548

public fun compute_average_entry_price(position:UserPosition): u128 {
return if (position.oiOpen == 0) { 0 } else {

library::base_div(position.oiOpen, position.qPos)
}

}

Figure 13.2: position.move#L164-L168

public fun compute_pnl_per_unit(position: UserPosition, price: u128): Number{
let pPos = compute_average_entry_price(position);

return if (position.isPosPositive) {
signed_number::from_subtraction(price, pPos)
} else {
signed_number::from_subtraction(pPos, price)
}

Figure 13.3: trades/isolated_trading.move#L542-L548

If the price has decreased, the following occurs:

● price - oiOpen / qPos will return a negative number, and therefore
● - pnlPerUnit * quantity will be positive.

This will cause the amount of assets transferred to decrease. All the multiplications and
divisions that apply to pnlPerUnit round down. As a result, this decrease will always be
less than expected, and will profit the user instead of the protocol.

If the shift in the price is low, or the quantity is low, (price - oiOpen / qPos) *
quantity will round toward zero. As a result, fundsFlow will be equal to the same
amount if the price of the asset did not change.

The same issue happens in the case of a short position. Appendix F contains a test case to
trigger this issue.

Exploit Scenario
Ten thousands of long orders are open on asset A. The price of the asset decreases by
0.1%. All of the orders are reduced, but the owners successfully withdraw the same amount
that they would if the asset’s price did not change.

Recommendations
Short term, properly round up or down during the profit and loss computation to allocate
profit to the protocol instead of to the users.

Long term, document the expected rounding direction for every arithmetic operation.
Refactor the arithmetic operations to make them modular and ease their testing (see
appendix J). Investigate fuzzing opportunities in Sui.

Trail of Bits 44 Bluefin Security Assessment
PUBLIC

14. Improper market order design

Status: Undetermined

Severity: High Difficulty: Medium

Type: Access Controls Finding ID: TOB-BLUEFIN-14

Target: trades/isolated_trading.move, sources/evaluator.move

Description
Market orders in Bluefin are not actual market orders, as their execution can bypass the
current order book.

If a taker order has no price set, its price will be set by the Bluefin-controlled settlement
operator:

// if taker order is market order
if(data.takerOrder.price == 0){

data.takerOrder.price = data.fill.price;
};

Figure 14.1: trades/isolated_trading.move#L163-L167

This price is restricted to be a value within the market bound range:

/**
* verifies if the trade price for both long and short parties confirms to market
take bound checks
* @dev reversion implies taker order is at fault
*/
public fun verify_market_take_bound_checks(

checks: TradeChecks,
tradePrice: u128,
oraclePrice: u128,
isBuy: bool

) {
if(isBuy){

assert!(tradePrice <= (oraclePrice + library::base_mul(oraclePrice,
checks.mtbLong)), error::trade_price_greater_than_mtb_long());

}
else {

assert!(tradePrice >= (oraclePrice - library::base_mul(oraclePrice,
checks.mtbShort)), error::trade_price_greater_than_mtb_short());

};

Trail of Bits 45 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/9af90b8d701be62a6272f4d79a91afe6f3349fa5/bluefin_foundation/sources/trades/isolated_trading.move#L163-L167

}

Figure 14.2: evaluator.move#L339-L355

As a result, these orders do not need to follow the market, allowing a malicious settlement
operator to execute the order at an unfair price.

Exploit Scenario
The current order book has millions of trades on a 0.1% price difference. Bob makes a
maker order and expects it to be executed within a fair price of the current order book.
Eve, a malicious settlement operator, executes the order with a price significantly lower
than the current order book depth.

Recommendations
Short term, rename the marker order, and document explicitly that it may not be executed
over the current order book.

Long term, improve the visibility regarding the centralization risks in
https://learn.bluefin.io/.

Trail of Bits 46 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/blob/9af90b8d701be62a6272f4d79a91afe6f3349fa5/bluefin_foundation/sources/evaluator.move#L339-L355
https://learn.bluefin.io/

15. Sui lacks security maturity

Status: Undetermined

Severity: Informational Difficulty: High

Type: Patching Finding ID: TOB-BLUEFIN-15

Target: All contracts

Description
Sui is still at an early stage of development and did not receive a security review. As a
result, it is unclear if its underlying protections are properly implemented

The Sui documentation mentions the following:

Sui is pre-release software under rapid development. It has not been audited and is not
yet ready for production use.

After we have completed internal and external audits of Sui, we will establish a
responsible disclosure policy and a bug bounty program covering both protocol security
and software security. In the meantime, please report security problems to
security@mystenlabs.com.

The fast pace of Sui’s development is highlighted by the fact that the branch used during
this audit was already not compatible with the Bluefin codebase by the end of the security
review due to the changes in devnet-0.29.0.

Moreover, most of the security assumptions of Sui are undocumented (see appendix E),
and Move itself continues to receive fixes for security issues (e.g., move-language/1029).

If Bluefin is one of the first systems deployed on the Sui’s mainnet, it will inherit the
underlying risks of Sui and Move.

Recommendations
Short term, document the risks of Sui/Move to the users before deployment.

Long term, follow Move and Sui issues discussions on GitHub. Follow the results of the Sui
security review. Include the risks of compromise for Move/Sui in the incident response
plan.

Trail of Bits 47 Bluefin Security Assessment
PUBLIC

https://github.com/MystenLabs/sui/blob/main/SECURITY.md#security-policy
https://github.com/MystenLabs/sui/blob/main/doc/src/learn/sui-security.md
https://github.com/MystenLabs/sui/releases/tag/devnet-0.29.0
https://github.com/move-language/move/pull/1029/commits/1fa4ed20daaef28b47fe2c5a8d8f63b64523e16d

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 48 Bluefin Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 49 Bluefin Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Trail of Bits 50 Bluefin Security Assessment
PUBLIC

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 51 Bluefin Security Assessment
PUBLIC

C. Unit tests for issue TOB-BLUEFIN-4

This appendix contains two test cases to trigger TOB-BLUEFIN-4 . These test cases were
generated using fuzzing, and highlight different scenarios where assets can be drained
from the system:

● Figure C.1: One unit can be drained.
● Figure C.2: 1118156451633691191804013660 units can be drained, but the price of

the asset is one unit.

#[test]
fun test_rounding_1() {

// Value found using fuzzing
let price = 2190885;
let quantity = 415768982;
let leverage = 2000000000;
let feePerUnit = 0; // do not consider a fee

let mro =position::compute_mro(leverage);

// follow apply_isolated_margin, case 1 (Opening position or adding to
position size)

let marginPerUnit = library::base_mul(price, mro);

// Here fundsFlow and margin are supposed to be equal if feePerUnit is zero
// However because the order of the operation are different, the rounding

does not propagated in the same way
let fundsFlow = library::base_mul(quantity, marginPerUnit + feePerUnit); //

fundsFlow = quantity * (price *mro) - assuming no fee
let margin = library::base_mul(library::base_mul(quantity, price), mro); //

margin = (quantity * price) * mro

// assert with concrete value to ease debugging
assert!(fundsFlow == 455450, 1);
assert!(margin == 455451, 1);

// The following should always be true, otherwise you can receive more
margin than assets transferred, but it fails

assert!(fundsFlow >= margin, 1);

}

Figure C.1: One unit can be drained.

#[test]
fun test_rounding_2() {

// Value found using fuzzing
let price = 1;

Trail of Bits 52 Bluefin Security Assessment
PUBLIC

let quantity = 2236312903267382383608027320078205362;
let leverage = 2000000000;
let feePerUnit = 0; // do not consider a fee

let mro =position::compute_mro(leverage);

// follow apply_isolated_margin, case 1 (Opening position or adding to position
size)

let marginPerUnit = library::base_mul(price, mro);

// Here fundsFlow and margin are supposed to be equal if feePerUnit is zero
// However because the order of the operation are different, the rounding does

not propagated in the same way
let fundsFlow = library::base_mul(quantity, marginPerUnit + feePerUnit); //

fundsFlow = quantity * (price *mro) - assuming no fee
let margin = library::base_mul(library::base_mul(quantity, price), mro); //

margin = (quantity * price) * mro

// assert with concrete value to ease debugging
assert!(fundsFlow == 0, 1);
assert!(margin == 1118156451633691191804013660, 1);

// The following should always be true, otherwise you can receive more margin
than assets transferred, but it fails

assert!(fundsFlow >= margin, 1);

}

Figure C.2: 1118156451633691191804013660 units can be drained.

Trail of Bits 53 Bluefin Security Assessment
PUBLIC

D. Unit tests for issue TOB-BLUEFIN-5

This appendix contains a test case to trigger TOB-BLUEFIN-5, where fees round down
incorrectly.

#[test]
fun test_rounding_3() {

// Value found using fuzzing
let price = 2000000000;
let quantity = 1;
let leverage = 2000000000;
let feePerUnit = 100000000; // 10**8

let mro =position::compute_mro(leverage);

// follow apply_isolated_margin, case 1 (Opening position or adding to
position size)

let marginPerUnit = library::base_mul(price, mro);

// Fee round down
let fundsFlow = library::base_mul(quantity, marginPerUnit + feePerUnit);
let margin = library::base_mul(library::base_mul(quantity, price), mro);

// assert with concrete value to ease debugging
assert!(fundsFlow == 1, 1);
assert!(margin == 1, 1);

// Fee is non-zero, so margin<fundsFlow should be true, but it fails
assert!(margin < fundsFlow, 1);

}

Figure D.1: Test case

Trail of Bits 54 Bluefin Security Assessment
PUBLIC

E. Unit tests for issue TOB-BLUEFIN-12

This appendix contains a test case to trigger TOB-BLUEFIN-12, showcasing inconsistent
margin amounts.

#[test]
fun test_rounding_flip() {

// Value found using fuzzing
let price = 1176935311;
let leverage = 2028594565;
let q0 = 2;
let q1 = 9610882290262814626862285;

leverage = library::round_down(leverage);
let mro =position::compute_mro(leverage);

// simulate apply_isolated_margin case 1
// Only track funds flow and margin increase
// assume no fee
let fundsFlow_pay = library::base_mul(library::base_mul(price, mro), q0);
let margin_increase = fundsFlow_pay;

// simulate apply_isolated_margin case 3
// Only track funds flow and margin increase
// assume no fee, no change in price
let qPos = q0;

let fundsFlow_pay2 = library::base_mul((q1 - qPos), library::base_mul(price,
mro)) - margin_increase;

let margin_increase2 = library::base_mul(library::base_mul(q1 - qPos,
price), mro);

assert!(fundsFlow_pay == 1, 1);
assert!(margin_increase2 == 5655693368637429002300754, 1);
assert!(fundsFlow_pay2 == 5655693363831987857169346, 1);
assert!(fundsFlow_pay + fundsFlow_pay2 == 5655693363831987857169347, 1);
// This fail
// margin increased by 4805441145131407 for free
//
assert!(margin_increase2 <= fundsFlow_pay + fundsFlow_pay2, 1);

}

Figure E.1: Test case

Trail of Bits 55 Bluefin Security Assessment
PUBLIC

F. Unit tests for issue TOB-BLUEFIN-13

This appendix contains a test case to trigger TOB-BLUEFIN-13, showing that incorrect
rounding allows attackers to withdraw more assets than intended.

#[test]
fun test_rounding_3() {

// Value found using fuzzing
let price = 2000000000;
let quantity = 1;
let leverage = 2000000000;
let feePerUnit = 100000000; // 10**8

let mro =position::compute_mro(leverage);

// follow apply_isolated_margin, case 1 (Opening position or adding to
position size)

let marginPerUnit = library::base_mul(price, mro);

// Fee round down
let fundsFlow = library::base_mul(quantity, marginPerUnit + feePerUnit);
let margin = library::base_mul(library::base_mul(quantity, price), mro);

// assert with concrete value to ease debugging
assert!(fundsFlow == 1, 1);
assert!(margin == 1, 1);

// Fee is non-zero, so margin<fundsFlow should be true, but it fails
assert!(margin < fundsFlow, 1);

}

Figure F.1: Test case

Trail of Bits 56 Bluefin Security Assessment
PUBLIC

G. Move/Sui Checks

The following list includes some of the built-in checks provided by Move/Sui.

Sui has unclear documentation about its built-in protections (see sui#7604), which can
cause developers to make incorrect assumptions. In particular, the documentation does
not clarify if some checks are performed by the compiler or at the bytecode level. Checks
done by the compiler might not be strong enough, as an attacker could craft malicious
bytecode. This appendix aims to highlight checks done at the bytecode level.

● Restrictions on the init function. In particular:

○ The init function must be private and have two parameters at most.

○ The first parameter must be a TxContent, and the second parameter is
optional and must be a one-time witness.

○ This is checked by the Sui bytecode verifier: entry_points_verifier.rs#L30-L37

● Restrictions on functions with the entry modifier. In particular, any function that
has the entry modifier should meet the following criteria:

○ It cannot have any return value, and

○ If it has a TxContext parameter, it must be the last parameter.

This is checked by the sui bytecode verifier: entry_points_verifier.rs#L39-L43

● Restrictions on structures with the key ability. In particular, such structures
must meet the following criteria:

○ It must have a first field named id whose type is sui::object::UID. This is
checked by the Sui bytecode verifier: struct_with_key_verifier.rs#L4-L7.

○ It must have an ID field that cannot be leaked. This is checked by the Sui
bytecode verifier: id_leak_verifier.rs#L4-L14.

● Restrictions on opcodes. In particular, all global storage opcodes are forbidden.
This is checked by the Sui bytecode verifier:
global_storage_access_verifier.rs#L15-L16.

● Restrictions on structure/objects access. In particular, the following criteria apply:

○ New instances can be created only inside the module that defines them.

Trail of Bits 57 Bluefin Security Assessment
PUBLIC

https://github.com/MystenLabs/sui/issues/7604
https://github.com/MystenLabs/sui/blob/9b32fe8f30fcaafa2884ce63eb7fa14999e6c4ab/crates/sui-verifier/src/entry_points_verifier.rs#L30-L37
https://github.com/MystenLabs/sui/blob/9b32fe8f30fcaafa2884ce63eb7fa14999e6c4ab/crates/sui-verifier/src/entry_points_verifier.rs#L39-L43
https://github.com/MystenLabs/sui/blob/9b32fe8f30fcaafa2884ce63eb7fa14999e6c4ab/crates/sui-verifier/src/struct_with_key_verifier.rs#L4-L7
https://github.com/MystenLabs/sui/blob/9b32fe8f30fcaafa2884ce63eb7fa14999e6c4ab/crates/sui-verifier/src/id_leak_verifier.rs#L4-L14
https://github.com/MystenLabs/sui/blob/9b32fe8f30fcaafa2884ce63eb7fa14999e6c4ab/crates/sui-verifier/src/global_storage_access_verifier.rs#L15-L16

○ Their fields can be accessed only inside the module that defines them.

○ This is checked by Move (advanced-topics/struct.html). Our initial review
indicates that it is checked at the bytecode level, but we could not confirm
these assumptions.

● Restrictions on one-time witnesses objects. These are special structures that
have the same name as the module, and they have specific properties. This is
checked by the Sui bytecode verifier: one_time_witness_verifier.rs#L4-L17.

● Restrictions on transfer functions. All transfer functions
(transfer::transfer<T>(...)) are restricted to their current module. This is
checked by the Sui bytecode verifier: private_generics.rs#L37-L46.

Trail of Bits 58 Bluefin Security Assessment
PUBLIC

https://move-book.com/advanced-topics/struct.html
https://github.com/MystenLabs/sui/blob/9b32fe8f30fcaafa2884ce63eb7fa14999e6c4ab/crates/sui-verifier/src/one_time_witness_verifier.rs#L4-L17
https://github.com/MystenLabs/sui/blob/9b32fe8f30fcaafa2884ce63eb7fa14999e6c4ab/crates/sui-verifier/src/private_generics.rs#L37-L46

H. Access Control Capabilities

The following appendix lists the various capabilities that are used within the system and
highlights each capability’s responsibilities.

Capability Description

ExchangeAdminCap The ExchangeAdminCap is the most critical user of the system. The
owner of this capability is responsible for the following:

1. Update the exchange guardian
2. Update the price oracle operator
3. Update the deleveraging operator
4. Add/remove a settlement operator
5. Create/remove a perpetual market
6. Update the insurance pool address and percentage
7. Set the fee pool address
8. Update the minimum/maximum price of the perpetual

market
9. Update the step/tick size of the perpetual market
10. Update the range bounds for a perpetual market
11. Update the minimum/maximum quantities for limit and

market orders for a perpetual market
12. Update the maximum open interest for a given leverage for a

perpetual market
13. Update the maximum price difference between oracle

updates for a perpetual market

ExchangeGuardianCap The owner of the ExchangeGuardianCap is responsible for the
following:

1. Enable/disable withdrawals from the bank
2. Enable/disable trading for a perpetual market

SettlementCap The owner of a SettlementCap is responsible for executing trades
on-chain after they are matched on the off-chain orderbook.

Trail of Bits 59 Bluefin Security Assessment
PUBLIC

DeleveragingCap The owner of the DeleveragingCap is responsible for performing
auto-deleveraging of underwater positions.

PriceOracleOperator
Cap

The owner of the PriceOracleOperatorCap is responsible for
updating the oracle price for a perpetual.

Trail of Bits 60 Bluefin Security Assessment
PUBLIC

I. Access Control Review

This appendix lists all the access controls associated with externally accessible functions
(public or entry). Sui possesses a complex built-in access controls system, which is a mix of
parameter restrictions through the objects system and modifiers (public/friend/entry) of a
function.

We recommend that Bluefin review this list and integrate it into their documentation. A
particular care must be taken if any change is applied on the access on objects (see
TOB-BLUEFIN-8 and TOB-BLUEFIN-9).

Error

Name Access Controls Change state Notes

error’s functions None

Evaluator

Name Access Controls Change state Notes

evaluator::verif
y_X

None TradeChecks objects
can be access through
perpetual::checks

evaluator::tickS
ize

None TradeChecks objects
can be access through
perpetual::checks

Exchange

exchange::create
_perpetual

ExchangeAdminCap X

exchanges::trade CapabilitiesSafe X

exchanges::liqui
date

None X Allow anyone to
liquidate a position

exchanges::delev
erage

CapabilitiesSafe X

Trail of Bits 61 Bluefin Security Assessment
PUBLIC

exchanges::add_m
argin

None X

exchanges::remov
e_margin

None X

exchanges::adjus
t_leverage

None X

exchanges::close
_position

None X

Guardian

Name Access Controls Change state Notes

guardian::set_wi
thdrawal

CapabilitiesSafe X

guardian::set_tr
ading_permit

CapabilitiesSafe X

Isolated_liquidated

Name Access Controls Change state Notes

isolated_liquida
ted::trade

TradeData X TradeData is
accessible only through
isolated_liquidati
on::pack_trade_dat
a, which has the
friend modifier
(TOB-BLUEFIN-8)

Library

Name Access Controls Change state Notes

library’s functions None

Trail of Bits 62 Bluefin Security Assessment
PUBLIC

Margin_bank

Name Access Controls Change state Notes

margin_bank::get
_balance

None Bank is a shared object.

margin_bank::is_
withdrawal_allow
ed

None Bank is a shared object.

margin_bank::dep
osit_to_bank

None X

margin_bank::wit
hdraw_from_bank

None X

margin_bank::wit
hdraw_all_margin
_from_bank

None X

Perpetual

Name Access Controls Change state Notes

perpetual’s getters
(L207-L265)

None Perpetual is a shared
object.

perpetual’s
setters (L272 -
L431)

ExchangeAdminCap X Set_oracle_price
has different access
controls

perpetual::set_o
racle_price

CapabilitiesSafe,
PriceOracleOperatorCa
p

X

Trail of Bits 63 Bluefin Security Assessment
PUBLIC

Position

Name Access Controls Change state Notes

position’s getters
(L69-91)

UserPosition

position::comput
e_margin_ratio

UserPosition

position::comput
e_average_entry_
price

UserPosition

position::create
_position

UserPosition X See TOB-BLUEFIN-9

position::verify
_collat_checks

UserPosition

position::comput
e_mro

position::comput
e_pnl_per_unit

UserPosition

position::is_und
ercollat

UserPosition

Price_oracle

Name Access Controls Change state Notes

price_oracle::pr
ice

None PriceOracle can be
accessed through
perpetual::priceOr
acle

Trail of Bits 64 Bluefin Security Assessment
PUBLIC

Roles

Name Access Controls Change state Notes

roles:check_X CapabilitiesSafe
and XCap objects

roles::is_sub_ac
count

None SubAccounts is a
shared object.

roles’s setters
(L137-L237)

ExchangeAdminCap X

roles::set_sub_a
ccount

None X

Signed_number

Name Access Controls Change state Notes

signed_number’s
functions

None Can create Number
objects and apply
arithmetic operations
on them

Trail of Bits 65 Bluefin Security Assessment
PUBLIC

J. Rounding Recommendations

Bluefin’s arithmetics always round down on every operation, which can lead to the loss of
precision that benefits the user instead of the system. This has caused multiple issues
(TOB-BLUEFIN-4, TOB-BLUEFIN-5, TOB-BLUEFIN-12, TOB-BLUEFIN-13), and further issues
are likely to be present.

The following describes how to determine the rounding direction per operation.

We recommend applying the same analysis for all arithmetic operations, and to consider
rewriting some of the formulas to simplify rounding.

Determining the rounding direction: Simple rounding
To determine how to apply a rounding up or down, one can reason about every operation’s
outcome.

For example, when a position is open, fundsFlow (the amount of assets to be paid) is
determined by the following formula:

𝑓𝑢𝑛𝑑𝑠𝐹𝑙𝑜𝑤 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 * (𝑝𝑟𝑖𝑐𝑒 * 1
𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡)

Here, we want fundsFlow’s loss of precision favor the protocol; therefore, its value should
tend toward a non-zero value (↗). As a result:

● must ↗ 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 * (𝑝𝑟𝑖𝑐𝑒 * 1
𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡)

● must ↗𝑝𝑟𝑖𝑐𝑒 * 1
𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒

● must ↗1
𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒

Which gives:

𝑓𝑢𝑛𝑑𝑠𝐹𝑙𝑜𝑤
↗

 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 *
↗

 (𝑝𝑟𝑖𝑐𝑒 *
↗

 1
𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 ↗ + 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡)

Context-dependent rounding: PnL example
Some formulas are context-dependent, as their rounding may depend on their use case.
This section provides an analysis of the impact of rounding in the profit and loss
computation.

Rounding and negative number
In the context of signed integers, rounding can be context-dependent. For example, for a
signed integer representing fundsFlow, the amount of assets is transferred as follows:

Trail of Bits 66 Bluefin Security Assessment
PUBLIC

● If the number is positive, the user will pay assets. The rounding should tend toward
a non-zero value (↗).

○ For example, + 1.56 should be rounded toward +1.6.

● If the number is negative, the user will receive assets. The rounding should tend
toward a zero value ().↘

○ For example, - 1.56 should be rounded toward -1.5.

For a reduce order on a long position, fundsFlow is determined by the following formula:

𝑓𝑢𝑛𝑑𝑠𝐹𝑙𝑜𝑤 = (− 𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡 + 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡) * 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 − 𝑚𝑎𝑟𝑔𝑖𝑛 * 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦
𝑞𝑃𝑜𝑠

Figure J.1: trades/isolated_trading.move#L551

With:

𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡 = 𝑝𝑟𝑖𝑐𝑒 − 𝑜𝑖𝑂𝑝𝑒𝑛
𝑞𝑃𝑜𝑠

In the code, fundsFlow is bounded to be a zero or negative number, reducing the
complexity of the associated rules:

fundsFlow = signed_number::negative_number(fundsFlow);

Figure J.2: trades/isolated_trading.move#L551

As a result, fundsFlow should tend toward zero (↘). There are two components, separated
by the subtraction operation:

𝐴 = (− 𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡 + 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡) * 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦
𝐵 = 𝑚𝑎𝑟𝑔𝑖𝑛 * 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝑞𝑃𝑜𝑠
𝑓𝑢𝑛𝑑𝑠𝐹𝑙𝑜𝑤

↘
 = 𝑚𝑖𝑛(𝐴 − 𝐵, 0)

This formulation makes the rounding complex:

● If A > B, then is zero𝑓𝑢𝑛𝑑𝑠𝐹𝑙𝑜𝑤

● If A < B, then B should round toward a zero value , and then↘
○ must𝑚𝑎𝑟𝑔𝑖𝑛 * 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝑞𝑃𝑜𝑠 ↘

○ must 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦
𝑞𝑃𝑜𝑠 ↘

● If 𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡 > 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡
○ must (− 𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡 + 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡) * 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 ↘

● If 𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡 < 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡
○ must (− 𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡 + 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡) * 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 ↗

Trail of Bits 67 Bluefin Security Assessment
PUBLIC

Here, pnlPerUnit can be positive or negative, further increasing the complexity of the
associated rules.

Rewriting PnL to ease rounding

fundsFlow can be rewritten to ease the rounding and reduce the rounding rules. For
example:

𝑓𝑢𝑛𝑑𝑠𝐹𝑙𝑜𝑤 = (− 𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡 + 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡 − 𝑚𝑎𝑟𝑔𝑖𝑛
𝑞𝑃𝑜𝑠) * 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

Figure J.3: trades/isolated_trading.move#L551

Considering that fundsFlow is bounded to be a zero or negative number, this can be
written as:

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = − 𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡 + 𝑓𝑒𝑒𝑃𝑒𝑟𝑈𝑛𝑖𝑡 − 𝑚𝑎𝑟𝑔𝑖𝑛
𝑞𝑃𝑜𝑠

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐴𝑐𝑐 = 𝑚𝑖𝑛(𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟, 0)

𝑓𝑢𝑛𝑑𝑠𝐹𝑙𝑜𝑤 = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐴𝑐𝑐 * 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

Figure J.4: trades/isolated_trading.move#L551

Here, in order to have fundsFlow tend toward a zero value (), only the rounding in↘
pnlPerUnit is context-dependent:

● is positive (the long has a profit):𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡
○ must ↘ 𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡
○ must ↘ 𝑝𝑟𝑖𝑐𝑒 − 𝑜𝑖𝑂𝑝𝑒𝑛

𝑞𝑃𝑜𝑠

○ must 𝑜𝑖𝑂𝑝𝑒𝑛
𝑞𝑃𝑜𝑠 ↗

● is negative (the long has a loss):𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡
○ must𝑝𝑛𝑙𝑃𝑒𝑟𝑈𝑛𝑖𝑡 * 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 ↗
○ 𝑝𝑟𝑖𝑐𝑒 − 𝑜𝑖𝑂𝑝𝑒𝑛

𝑞𝑃𝑜𝑠 ↗

○ must ↘ 𝑜𝑖𝑂𝑝𝑒𝑛
𝑞𝑃𝑜𝑠

Therefore, compute_pnl_per_unit, which is used for a long position, should be
implemented as follows:

pPos_high = compute_average_entry_price_high(position)

if long_position
By checking first for price < pPos_high

Trail of Bits 68 Bluefin Security Assessment
PUBLIC

We favorite loss over profit
In case pPos_low <= price <= pPos_high
if price < pPos_high

Return a loss
return price - pPos_high

Return a profit
return price - compute_average_entry_price_low(position)

Figure J.5: Pseudo code for compute_pnl_per_unit for reducing long position order

General rules
The following describes general rules to follow:

● Start from the desired rounding direction of the entire formula, and analyze
the inner components step by step. Rounding analysis is easier when applied
from the outer formula to its inner components.

● Create arithmetics primitives that round up and down, such as
base_div_down, base_div_up, base_mul_up, and base_mul_down.

● Reduce the number of multiplication and division when the underlying
variables have the same sign, or a bound (e.g., min/max) can be applied. This
may reduce the accumulation of precision loss.

● Reduce the number of variables that can be both positive and negative. If a
variable has a sign that can switch, its rounding direction may also switch.

● Create unit tests to highlight the result of the precision loss. Unit tests will help
to validate the manual analysis.

● Use fuzzing and differential testing to increase the confidence level of the
testing. Automated analysis, such as fuzzing and differential testing, will increase
the confidence level and the security maturity of the system.

Trail of Bits 69 Bluefin Security Assessment
PUBLIC

K. Code Quality Recommendations

Trail of Bits recommends the following steps to enhance code quality.

Exchange
● Clarify the documentation of create_perpetual

(sources/exchange.move#L54). The current documentation states that “Transfers
adminship of created perpetual to admin,” which could be interpreted as the transfer
of the perpetual object’s ownership. This is not possible since a Perpetual object is
shared.

MarginBank
● Create helper functions to convert to/from tokens amount and bank’s account

balances. Using hard-coded values that are copied/pasted is error prone.

Evaluator
● Remove the check at evaluator.move#L273. The check checks.maxPrice >

checks.minPrice is already implicitly verified by the two previous statements.

Trades
● Follow a consistent order of verification in the verify_trade functions. For

example, the isolated_adl module checks for user_position_size_is_zero
and adl_all_or_nothing_constraint_can_not_be_held one after the other
(in verify_account), while the isolated_liquidation module checks for
liquidatee_above_mmr in between. Inconsistency between the checks that are
shared makes it more difficult to review them.

Position
● Remove if (position.oiOpen == 0) { 0 } in

compute_average_entry_price (sources/position.move#L165). The
function already returns zero if oiOpen is zero.

○ If the intent was instead to return zero when qPos is zero, update the check.

Trail of Bits 70 Bluefin Security Assessment
PUBLIC

L. Trade Modules Architecture Recommendations

The following recommendations will facilitate the review and testing of the trade modules
and reduce the likelihood of mistakes.

● Split apply_isolated_margin functions into multiple internal functions to make
themmodular. While these functions contain the core arithmetics of the protocol,
they are large functions that contain significant complexity. Additionally, this will
reduce the amount of repetitive code across the trade modules.

● Add inline documentation to describe the arithmetic formulas. The lack of
documentation and links to the Notion’s documentation impeded our review and
increase the likelihood of issues introduced by future updates.

● Add Sui-level units tests. Having dedicated functions for the arithmetic will allow
developers to create arithmetic tests more easily and reduce the likelihood of issues
in this area.

● Consider splitting large operations through temporary variables. This will
increase the code’s readability. For example, Figure L.1 could be split into multiple
operations through temporary variables.

fundsFlow = signed_number::add_uint(
signed_number::sub_uint(

signed_number::mul_uint(
signed_number::add_uint(

signed_number::negate(pnlPerUnit),
closingFeePerUnit),

qPos),
margin),

library::base_mul(
newQPos,
library::base_mul(

fill.price,
mro)

+ feePerUnit)
);

Figure L.1: trades/isolated_trading.move#L578-L592

Trail of Bits 71 Bluefin Security Assessment
PUBLIC

M. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not a comprehensive analysis of the system.

From June 12 to June 13, 2023, Trail of Bits reviewed the fixes and mitigations implemented
by the Bluefin team for the issues identified in this report. We reviewed each fix to
determine its effectiveness in resolving the associated issue.

In summary, of the 15 issues described in this report, Bluefin has resolved 10, has not
resolved three issues, and two issues’ resolutions remain undetermined. For additional
information, please see the Detailed Fix Review Results below.

ID Title Status

1 Order hashing schema is vulnerable to replay attacks Resolved

2 Unclear usage of token decimal precision Resolved

3 Order type (maker/taker) is not enforced Resolved

4 Inconsistent order of operations when opening or increasing a position Resolved

5 Fees in apply_isolated_margin has an incorrect rounding direction Unresolved

6 Error handling deviates from Sui best practices Unresolved

7 Unnecessary use of Move abilities Resolved

8 The liquidation module’s trade function is callable by any module Resolved

9 The create_position function is lacking access controls Resolved

Trail of Bits 72 Bluefin Security Assessment
PUBLIC

10 Margin ratio validation deviates from the mathematical specification Resolved

11 Overcomplicated access control mechanism for the Guardian Resolved

12 Inconsistent order of operations when flipping positions Resolved

13 Incorrect rounding in the profit and loss computation allows to
withdraw more assets than expected

Unresolved

14 Improper market order design Undetermined

15 Sui lacks security maturity Undetermined

Trail of Bits 73 Bluefin Security Assessment
PUBLIC

Detailed Fix Review Results
TOB-BLUEFIN-1: Order hashing schema is vulnerable to replay attacks
Resolved in PR 88. The Bluefin team has added domain-specific information to the order
payload that must be signed, preventing signature re-use.

TOB-BLUEFIN-2: Unclear usage of token decimal precision
Resolved in PR 75. The Bluefin team updated the decimal conversion logic to use a helper
function that converts USDC-decimal precision to Bluefin’s base decimal precision for both
deposits and withdrawals.

TOB-BLUEFIN-3: Order type (maker/taker) is not enforced
Resolved in PR 83. The Bluefin team added a Boolean parameter to the order object to
differentiate between maker and taker orders.

TOB-BLUEFIN-4: Inconsistent order of operations when opening or increasing a
position
Resolved in PR 77. The Bluefin team has updated the order of operations when
opening/increasing a position to prevent the funds flow and margin calculations from
deviating. The team also added inline documentation to better explain the arithmetic
operations.

TOB-BLUEFIN-5: Fees in apply_isolated_margin has an incorrect rounding direction
The issue has not been resolved. The client provided the following context for this finding’s
fix status:

This is by design, we truncate the fee owed at the 10th digit deliberately. There is no way
around truncation errors when working with finite precision decimals. The best we can
do is always round up in favor of the protocol, but we reason that an attack would be too
expensive to be viable. Considering the loss of precision at the 10th digit, ~1 billion
trades would have to be made to deprive the protocol of $1 worth of fees. With the minor
consequence of the design in the monetary value, we prefer to keep the trader-first
design.

TOB-BLUEFIN-6: Error handling deviates from Sui best practices
The issue has not been resolved. The client provided the following context for this finding’s
fix status:

We won’t be doing anything for this issue as our approach to managing error codes in a
single source/module makes it easy to manage the same errors that are being used
across modules. Any future update to an error code will require changes only in a single
file.

Trail of Bits 74 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/pull/88
https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/pull/75
https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/pull/83
https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/pull/77

TOB-BLUEFIN-7: Unnecessary use of Move abilities
Resolved in PR 76. The Bluefin team identified structs that had superfluous Move abilities
and removed them accordingly.

TOB-BLUEFIN-8: The liquidation module’s trade function is callable by any module
Resolved in PR 78. The Bluefin team updated the liquidation module’s trade function to
include the friend modifier, which will allow only friend modules to call that function.

TOB-BLUEFIN-9: The create_position function is lacking access controls
Resolved in PR 79. The Bluefin team updated the position module’s create_position
function to include the friend modifier.

TOB-BLUEFIN-10: Margin ratio validation deviates from the mathematical
specification
Resolved in PR 80. The Bluefin team updated the margin ratio validation to match that of
the mathematical specification.

TOB-BLUEFIN-11: Overcomplicated access control mechanism for the Guardian
Resolved in PR 81. The Bluefin team removed the guardian module and updated the
margin_bank::set_withdrawal_status and the perpetual::set_trading_permit
functions to ensure that they are callable only by the owner of the ExchangeGuardianCap
capability.

TOB-BLUEFIN-12: Inconsistent order of operations when flipping positions
Resolved in PR 82. The Bluefin team has updated the order of operations when flipping a
position to prevent the funds flow and margin calculations from deviating.

TOB-BLUEFIN-13: Incorrect rounding in the profit and loss computation allows to
withdraw more assets than expected
The issue has not been resolved. The client provided the following context for this finding’s
fix status:

Similarly to TOB-BLUEFIN-5, there is no way to get around truncation errors. The best we
can do is to round in favor of the protocol. Under normal operation, the profits and
losses of the system from rounding down positive and negative user PnLs will even
themselves out over many trades in the long run. We believe an attack at the
vulnerability would also be too expensive to be viable. At minimum 106 trades would be
needed to extract $1, given the unlikely accumulation of numeric imprecision.

TOB-BLUEFIN-14: Improper market order design
Undetermined. The Bluefin team has noted that they will update their public-facing
documentation to highlight the pricing mechanism and pricing bounds of the market order.
However, since the updated documentation was not provided, this issue’s resolution
remains “Undetermined.”

Trail of Bits 75 Bluefin Security Assessment
PUBLIC

https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/pull/76
https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/pull/78
https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/pull/79
https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/pull/80
https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/pull/81
https://github.com/fireflyprotocol/bluefin-exchange-contracts-sui/pull/82

TOB-BLUEFIN-15: Sui lacks security maturity
Undetermined. The Bluefin team has acknowledged the risk and notes that they will
document it before deployment. However, since the updated documentation was not
provided, this issue’s resolution remains “Undetermined.”

Trail of Bits 76 Bluefin Security Assessment
PUBLIC

